脑膜瘤的病理学类型多样,临床表现复杂,是最常见的中枢神经系统(CNS)原发性肿瘤[1]。2021年世界卫生组织(WHO)CNS肿瘤分类将脑膜瘤分为WHO 1~3级,包括15种病理学亚型[2],其中,约80%为WHO 1级脑膜瘤,约20%为WHO 2~3级脑膜瘤[1]。大多数低级别脑膜瘤(WHO 1级)患者通过手术和(或)放射治疗能够获得良好的临床预后。然而,部分具有进展趋势的低级别和高级别脑膜瘤(WHO 2~3级)仍面临着手术全切除率低、复发率和致残率高等问题[3,4]。近年来,越来越多的研究发现,脑膜瘤从基因到蛋白质层面的分子病理学特征与其病理学分级、临床预后密切相关[1,5,6,7,8];此外,仅依据组织形态作为主要判定标准的传统病理学分级和分型已不足以准确预测所有脑膜瘤患者的临床预后[1,5,6,7,8]。因此,将分子分型应用于脑膜瘤患者的诊断、治疗、病情监测,以及后续治疗方案的决策,显得尤为重要。本共识在脑膜瘤传统病理学分型的基础上,整合能够细化脑膜瘤诊断及分类的关键分子生物学标志物,旨在进一步提高脑膜瘤的诊疗水平、改善患者的预后。
一、概述
脑膜瘤的病理学类型多样,临床表现复杂,是最常见的中枢神经系统(CNS)原发性肿瘤[1]。2021年世界卫生组织(WHO)CNS肿瘤分类将脑膜瘤分为WHO 1~3级,包括15种病理学亚型[2],其中,约80%为WHO 1级脑膜瘤,约20%为WHO 2~3级脑膜瘤[1]。大多数低级别脑膜瘤(WHO 1级)患者通过手术和(或)放射治疗能够获得良好的临床预后。然而,部分具有进展趋势的低级别和高级别脑膜瘤(WHO 2~3级)仍面临着手术全切除率低、复发率和致残率高等问题[3,4]。近年来,越来越多的研究发现,脑膜瘤从基因到蛋白质层面的分子病理学特征与其病理学分级、临床预后密切相关[1,5,6,7,8];此外,仅依据组织形态作为主要判定标准的传统病理学分级和分型已不足以准确预测所有脑膜瘤患者的临床预后[1,5,6,7,8]。因此,将分子分型应用于脑膜瘤患者的诊断、治疗、病情监测,以及后续治疗方案的决策,显得尤为重要。本共识在脑膜瘤传统病理学分型的基础上,整合能够细化脑膜瘤诊断及分类的关键分子生物学标志物,旨在进一步提高脑膜瘤的诊疗水平、改善患者的预后。
二、脑膜瘤WHO病理学诊断的分类分级标准及更新
自1979年开始,WHO定期对CNS肿瘤分类分级指南进行修订,以规范病理学诊断标准[5,6,7,8]。2016年,第4版CNS肿瘤分类分级指南首次将肿瘤分子生物学特征纳入CNS肿瘤分类标准,针对弥漫性脑胶质瘤、髓母细胞瘤、室管膜瘤和其他胚胎来源的肿瘤进行了分子分型[9]。2021年,第5版CNS肿瘤分类分级指南(以下简称第5版指南)更新了部分CNS肿瘤亚型的命名和分级方法,并首次将脑膜瘤分子特征纳入诊断标准[2,10]。
根据第5版指南分类标准,脑膜瘤在传统组织学分级基础上(WHO 1~ 3级)增加了脑膜瘤分子特征作为诊断依据(表1)[2,10]。在WHO 1级脑膜瘤中,KLF4/TRAF7突变可作为分泌型脑膜瘤除形态学以外的判定标准[2,10,11]。此外,WHO 2级脑膜瘤的诊断标准为(符合1项即可诊断):(1)4~19个核分裂象/10 HPF。(2)确切地浸润脑组织。(3)特殊类型(脊索型脑膜瘤或透明细胞型脑膜瘤)。(4)至少符合以下图像中的3项:细胞密度增加,小细胞伴核质比例高,核仁明显,片状分布失结构,灶性自发性坏死[2,8,11]。
SMARCE1突变也可纳入透明细胞型脑膜瘤判定的参考标准[2,10,11]。WHO 3级脑膜瘤诊断标准为(符合1项即可诊断):(1)≥20个核分裂象/10 HPF。(2)明显的间变特征(肉瘤、癌或黑色素瘤样表现)。(3)TERT启动子突变。(4)CDKN2A和(或)CDKN2B纯合性缺失[2,8,11]。
表1
2021年WHO脑膜瘤的病理学分级和代表性分子特征[2,11]
三、脑膜瘤其他分级系统临床应用研究进展
除了临床应用最广泛的WHO分级系统以外,基于脑膜瘤遗传学背景的研究进展,目前还有许多研究团队尝试整合多组学数据对脑膜瘤患者及预后进行更准确的分层[3,4,12,13,14,15]。Sahm等[14]在2017年报道了一项多中心回顾性研究结果,通过整合DNA甲基化数据与基因组数据对患者进行临床预后分层,证实了该整合分级系统可提高脑膜瘤患者预后分层的准确性。2021年,Maas等[4]纳入3 031例脑膜瘤样本,再次验证了该分级系统在临床应用中的优势。2021年8月,Nassiri等[3]报道了一项临床回顾性研究结果,通过整合脑膜瘤基因组、转录组和蛋白组数据,将其分为4种独具临床及生物学特征的分子亚型,并证实与现有分级系统相比,这种分型方法能够更准确地预测患者的临床预后。随后,Driver等[16]报道了另一个基于染色质异常为特征的脑膜瘤分级系统,并证实了其潜在的临床应用前景。
综上所述,在第5版指南内容更新和脑膜瘤遗传背景研究进展的基础上,实现多组学整合的脑膜瘤分子诊疗专家共识将有益于判断患者的临床预后和后续的治疗决策。
四、专家共识制定方法及流程
本共识由中华医学会神经外科学分会神经肿瘤学组联合神经病理学专家、循证专家共同制定,根据PICO方式进行临床问题构建,即适应人群(patient)、干预措施(intervention)、对照(comparison)和结局(outcome)。并已在国际实践指南注册平台(International Practice Guideline Registry Platform)进行注册(注册号:IPGRP-2022CN234)。证据等级和推荐级别依据中国肿瘤临床学会关于实体瘤诊疗指南制定原则[17],结合脑膜瘤研究领域国内外最新进展及我国脑膜瘤诊疗现状,检索相关证据并进行评价。通过专家投票和Delphi法确定共识内容[18]。使用者为临床医生和参与脑膜瘤诊疗的相关专业人员,目标人群为脑膜瘤患者。
五、脑膜瘤相关分子标志物筛选
本共识通过关键词查阅PubMed、Web of Science和Science Direct数据库,共检索近20年内与脑膜瘤分子特征相关的文献1 626篇,对脑膜瘤关键生物标志物进行了筛选,结合标志物具体生物功能、蛋白通路相互作用,以及对脑膜瘤患者临床预后最终造成的影响,将其按照染色体异常、基因突变、表观遗传学异常以及蛋白靶点异常分为四类(图1)。
图1
脑膜瘤关键生物标志物筛选流程(n为相关文献数量,HR:性激素受体,ER:雌激素受体,PR:孕激素受体,AR:雄激素受体,SSTR2:生长抑素受体2,TKR:酪氨酸激酶受体,EGFR:表皮生长因子受体,VEGFR:血管内皮细胞生长因子受体,PDGFR:血小板衍生生长因子受体),FDA:美国食品药品监督管理局
六、脑膜瘤关键分子标志物与临床特征的相关性及其在术后放疗、药物治疗和随访中发挥的作用
(一)染色体异常
1.22号常染色体长臂(22q)缺失:
体细胞基因拷贝数改变能通过调节原癌基因和抑癌基因活性在脑膜瘤发生过程中发挥重要作用[1]。1967年,有研究发现,大部分脑膜瘤中存在G显带染色体畸变,表现为21号或22号染色体长臂缺失[1]。随后又不断有研究证实,半数以上脑膜瘤中22号染色体以单倍体形式存在[19]。提示,22q缺失在脑膜瘤的病理生理学过程中起关键作用。存在22q缺失的脑膜瘤多位于大脑半球、小脑半球和脊髓,少见于颅底[20],被认为与神经嵴和背中胚层起源显著相关[21]。染色体杂合性缺失分析提示,60%~70%散发脑膜瘤中存在22q缺失,且病理学级别越高,存在22q缺失的概率越大[22,23,24]。2004年,Pfisterer等[25]开展了一项单中心临床回顾性研究,纳入77例脑膜瘤样本进行分析,发现22q缺失与脑膜瘤的复发存在显著相关性(P<0.05)。2016年,Hilton等[26]纳入30例脑膜瘤样本进行回顾性研究,发现由于存在22q缺失的脑膜瘤中表皮生长因子受体(epidermal growth factor receptor,EGFR)鲜有表达,因此基于抗EGFR的靶向治疗对于其治疗作用可能不明显。2021年Hong等[27]报道了1例多次复发,同时伴随演进的脑膜瘤,其中1p/22q共缺失与舒尼替尼治疗敏感性相关。脑膜瘤驱动基因NF2位于22q,编码Merlin蛋白参与肿瘤生长抑制调控[28],数项针对NF2异常的药物临床试验已取得一定进展,具体内容详见本共识"NF2突变"部分。
推荐意见:推荐脑膜瘤术后患者行22q检测(Ⅰ级推荐,2A类证据);建议存在22q缺失的脑膜瘤患者术后5年以内至少每年随访1次(Ⅲ级推荐,3类证据)。
2.1号常染色体短臂(1p)缺失:
1p缺失存在于所有级别的脑膜瘤中,但在WHO 2~3级中较为常见,发生率仅次于22q异常,位居第二,被认为是脑膜瘤进展过程中的早期和关键事件,与脑膜瘤高复发率和病理学级别演进相关[25,29]。1p缺失最常累及的区域包括1p33-34和1p36,其缺失可能导致甲基化介导的TP73和ALPL失活[30,31,32,33]。脑膜瘤中存在1p/14q共缺失提示肿瘤存在复发风险,且更多见于由放射治疗导致的脑膜瘤患者[34]。此外,存在1p/14q共缺失的脑膜瘤多为低级别肿瘤演进而来,患者的预后与原发高级别组存在显著差异,提示这类肿瘤具有更加独特的生物学行为[35,36]。
推荐意见:推荐脑膜瘤患者术后行1p检测(Ⅰ级推荐,2A类证据);建议存在1p异常的患者术后5年内至少每6个月随访1次(Ⅲ级推荐,3类证据)。
3.14号常染色体长臂(14q)缺失:
14q缺失参与脑膜瘤的病理学进展过程,在各病理学级别脑膜瘤中均与肿瘤的较高侵袭性和复发风险相关,但具体机制尚未完全阐明[37,38,39,40,41]。14q缺失与脑膜瘤有丝分裂指数增加相关,且能够通过调控基因转录在脑膜瘤进展过程中发挥重要作用[42,43]。
推荐意见:推荐脑膜瘤患者术后行14q检测(Ⅰ级推荐,2A类证据);建议存在该染色体异常的患者术后5年内至少每6个月随访1次(Ⅲ级推荐,3类证据)。
4.18号常染色体长臂(18q)缺失:
18q缺失常发生于18q22末端,可增加脑膜瘤复发的风险[44]。18q缺失在WHO 2级脑膜瘤中占43%,与患者的复发显著相关[45,46]。目前,18q与脑膜瘤临床特征的相关性及在术后放疗、药物治疗和随访中发挥的作用尚需进一步研究。
推荐意见:建议脑膜瘤患者术后行18q检测(Ⅲ级推荐,2B类证据);建议存在该染色体异常的患者术后5年内每年至少随访1次(Ⅲ级推荐,3类证据)。
(二)基因突变
1.NF2突变:
NF2位于22q(22q12.2),编码Merlin蛋白[28]。散发性脑膜瘤患者中存在NF2突变或缺失(伴或不伴22q缺失)的比例达40%~60%,是脑膜瘤最常见的基因突变[12,23,47,48]。存在NF2突变的脑膜瘤多位于大脑半球、小脑半球和脊髓,常见于纤维型脑膜瘤(70%)和过渡型脑膜瘤(83%)[12,13,49]。NF2突变型脑膜瘤较NF2野生型脑膜瘤复发率高,这一现象在高级别脑膜瘤中更加明显[50,51,52,53]。因此,脑膜瘤NF2突变状态对患者的生存预后及肿瘤复发风险有一定的提示作用。
NF2编码的Merlin蛋白通过调节mTORC1激活mTOR生物信号通路,在脑膜瘤的病理生理学过程中发挥重要作用[54,55]。2020年,Williams等[56]分析了850例难治性脑膜瘤的基因组数据,发现至少存在三种不同的生物侵袭模式,其中NF2突变型最常见(n=426, 50%),且与男性相关(64.4%),通常还包含CDKN2A/B(24%)、染色体调控因子ARID1A(9%)和KDM6A(6%)等额外突变。在小鼠动物模型中,NF2失活、纯合缺失或点突变导致染色体不稳定性增加能够协同CDKN2A/B促进脑膜瘤发生[56,57]。临床前期研究结果显示,mTOR的选择性抑制剂依维莫司在脑膜瘤小鼠模型中显示出良好的抑瘤效果[58]。此外,2016年,Shih等[59]报道了一项多中心前瞻性Ⅱ期临床研究,发现依维莫司联合贝伐珠单抗治疗脑膜瘤后,约35%的患者超过6个月未观察到病情进展。另一项Graillon等[60]在2020年报道的多中心Ⅱ期临床试验(NCT02333565)纳入20例侵袭性脑膜瘤患者,接受依维莫司联合奥曲肽治疗后3个月,78%的患者的肿瘤体积缩小超过50%,肿瘤的中位生长率由16.6%降低至0.02%;与多靶点的酪氨酸激酶抑制剂舒尼替尼相比,上述治疗方案在改善脑膜瘤患者总生存期(overall survival, OS)及无进展生存期(progression-free survival,PFS)方面效果类似[61]。然而,2021年Karajannis等[62]报道了一项0期药代动力学研究,发现依维莫司在NF2突变型脑膜瘤组织中对其下游效应蛋白Phospho-S6抑制不完全,这或许可以解释依维莫司对部分NF2突变型脑膜瘤治疗效果有限的原因。一项正在进行的Ⅱ期临床试验(NCT02523014)初步显示,FAK抑制剂(GSK2256098)能够提高NF2突变型脑膜瘤患者6个月的PFS,但具体研究结论仍待进一步报道[63]。
推荐意见:推荐脑膜瘤患者术后行NF2检测(Ⅰ级推荐,2A类证据);建议存在NF2突变的脑膜瘤患者术后5年内每年至少随访1次(Ⅲ级推荐,3类证据)。
2.TERTp突变:
端粒的维持是细胞永生和衰老逃避的主要原因,TERT编码产物通过延长肿瘤细胞的端粒抑制肿瘤细胞衰老[64,65]。TERTp发生突变后可通过结合ETS转录因子上调TERT蛋白表达,促进肿瘤细胞永生化[64,65]。TERTp突变最初在黑色素瘤中发现,CNS肿瘤中亦有发生[64,65,66,67,68]。脑膜瘤中TERTp突变率约为6.5%~11%,随着肿瘤病理学级别的升高而增加,C228T和C250T为其常见突变位点[14,69,70]。TERTp突变与脑膜瘤的高复发率及高病死率密切相关,是低级别脑膜瘤演进为高级别脑膜瘤过程中的早期不良事件[70,71,72,73]。存在TERTp突变的原发高级别脑膜瘤患者术后接受辅助放疗的获益较TERTp野生型者更差[74]。第5版指南首次将TERTp突变纳入WHO 3级脑膜瘤的分子诊断标准中[2,70]。
TERTp突变为脑膜瘤的靶向药物治疗提供了新的靶点,但目前TERTp突变主要作为脑膜瘤的辅助诊断和预测预后的分子生物学标志物,暂未检索到处于临床试验阶段和上市的靶向药物。
推荐意见:推荐脑膜瘤患者术后行TERTp检测(Ⅰ级推荐,1A类证据);建议存在TERTp突变的脑膜瘤患者术后每3~6个月至少随访1次(Ⅲ级推荐,3类证据)。
3.CDKN2A/B异常:
CDKN2A位于9号染色体短臂(9p21.3),编码细胞周期依赖性蛋白激酶2A,与其同源基因CDKN2B编码产物具有相似的生物学功能,可通过调节细胞周期发挥抑制肿瘤细胞生长的作用[75]。在NF2突变型脑膜瘤小鼠模型中敲除CDKN2A/B可提高肿瘤的成瘤率[57]。CDKN2A异常的脑膜瘤患者,其PFS较对照组显著缩短[76]。存在CDKN2A/B纯合缺失的脑膜瘤患者,无论病理学级别如何,术后肿瘤更倾向于短期复发(中位进展时间为8个月对比101个月)[77]。第5版指南已将CDKN2A/B纯合缺失纳入WHO 3级脑膜瘤的分子诊断标准[2,11]。
推荐意见:推荐脑膜瘤患者术后行CDKN2A/B检测(Ⅰ级推荐,2A类证据);建议存在CDKN2A/B异常的患者术后至少每6个月随访1次(Ⅲ级推荐,3类证据)。
4.PI3K通路相关驱动基因AKT1、PIK3CA异常:
PI3K通路的异常激活可引起多种下游信号分子活化,调控肿瘤细胞增殖、凋亡等多种生物学进程,并介导肿瘤放化疗抵抗[78]。AKT1被认为是PI3K/AKT /mTORC1信号通路的关键节点[79]。AKT1E17K、PIK3CAE545K及PIK3CAH1047R是PI3K通路相关驱动基因最常见的突变位点[12,80]。AKT1E17K突变常见于低级别脑膜瘤中上皮型和过渡型,而罕见于高级别脑膜瘤[81],其发生位置多位于前颅底、中颅底中线部,也可位于枕骨大孔区,约30%的颅底脑膜瘤存在AKT1E17K突变,这些区域的AKT1突变对患者的OS有独立的预测价值[79,80,81,82,83,84]。在散发性脑膜瘤患者中,AKT1突变发生率为7%~2%,该突变导致AKT1异常激活,同时可促进脑膜瘤细胞增殖[79,85]。PIK3CA突变发生于4%~7%的脑膜瘤患者中,常独立于NF2,AKT1和SMO突变存在,少数患者可与TRAF7突变同时发生[12]。PIK3CA中多个位点可能出现异常激活,其中以H1047R和E545K位点最为常见[86]。PI3KCA错意突变(A3140T、A3140G和C112T)也是促进脑膜瘤发生的因素[87]。存在PI3KCA突变的脑膜瘤患者较其他类型更易早期复发,肿瘤进展平均时间为14.3个月[53]。
推荐意见:推荐脑膜瘤患者术后行AKT1、PIK3CA检测(Ⅰ级推荐,2A类证据);建议存在PI3K通路相关驱动基因AKT1、PIK3CA突变的患者术后5年内每6个月至少随访1次(Ⅲ级推荐,3类证据)。
特异性PI3K抑制剂可靶向抑制PI3K/AKT/mTOR的后续通路,mTOR的选择性抑制剂依维莫司对脑膜瘤患者的治疗效果已在"NF2突变"部分阐述。另有个案研究显示,AKT1抑制剂AZD5363(CapivasertⅠb)对上皮型脑膜瘤肺转移患者肿瘤控制>12个月[88],然而,对于存在AKTE17K突变的低级别脑膜瘤患者是否推荐使用靶向药物尚缺乏足够的证据支持。此外,与之相关的阿培利司和曲美替尼联合治疗难治性脑膜瘤的Ⅰ期临床试验正在进行(NCT03631953)[89]。
推荐意见:对PI3K通路相关驱动基因异常的脑膜瘤患者,建议采用依维莫司联合贝伐珠单抗或奥曲肽治疗(Ⅲ级推荐,2B类证据)。
5.Hedgehog通路相关驱动基因SMO、SUFU突变:
SMO及其下游调控基因SUFU突变多见于低级别脑膜瘤[12,47]。SMOL412F,SMOW535L及SUFU等位基因缺失为常见的突变类型。脑膜瘤患者中约3%~6%存在SMOL412F或SMOW535L突变,该类突变常见于颅底中线部位脑膜瘤,存在该类突变的颅底及颅眶沟通脑膜瘤患者复发率较高[13,53,79,83]。有研究显示,66%存在SUFU等位基因缺失的脑膜瘤患者远期出现复发[53]。此外,家族相关性多发脑膜瘤患者多存在SUFU胚系突变[48]。
推荐意见:推荐脑膜瘤患者术后行SMO、SUFU检测(Ⅰ级推荐,2A类证据);建议存在Hedgehog通路相关驱动基因SMO、SUFU突变的患者术后5年内至少每年随访1次(Ⅲ级推荐,3类证据)。
6.TRAF7突变:
TRAF7编码产物主要参与JNK和MAPK信号通路的调节,TRAF7突变常导致蛋白WD40结构异常[86,90]。TRAF7突变在脑膜瘤中的突变率约为25%,主要存在于WHO 1级脑膜瘤中,其中NF2野生型脑膜瘤发生TRAF7突变的概率为50%,与肿瘤短期复发相关[12,53,91]。存在TRAF7突变的脑膜瘤多位于颅底中线部位[12]。目前认为,TRAF7突变与PIK3CA突变同时存在对颅底脑膜瘤远期复发有一定的提示作用[86,92]。在NF2突变型和SMO突变型脑膜瘤中,尚未检索到TRAF7突变的相关报道[93],但TRAF7突变常与KLF4、AKT1或PIK3CA突变同时发生[12,48,86,94]。分泌型脑膜瘤多存在TRAF7和KLF4突变[94]。第5版指南首次将TRAF7/KLF4突变纳入分泌型脑膜瘤的判定依据[2]。
推荐意见:推荐脑膜瘤患者术后行TRAF7检测(Ⅰ级推荐,2A类证据)。
7.KLF4突变:
KLF4K409Q为脑膜瘤常见基因突变位点,该突变主要发生于低级别NF2野生型脑膜瘤中,且常与TRAF7突变共同存在[12]。该突变总体发生频率约为9%~12%,在NF2野生型脑膜瘤中,发生频率可达28%[95]。KLF4突变型脑膜瘤常位于前中颅底非中线部位[13]。与其他基因突变相关脑膜瘤相比,KLF4突变的脑膜瘤,瘤周水肿更为严重[13],但该类型脑膜瘤患者的5年无症状生存期更长[53]。由于KLF4突变仅在分泌型脑膜瘤存在[94],因此,第5版指南首次将KLF4/TRAF7突变纳入分泌型脑膜瘤的判定依据[2]。
推荐意见:推荐脑膜瘤患者术后行KLF4检测(Ⅰ级推荐,2A类证据)。
8.SMARCE1突变:
SMARCE1位于17号染色体长臂(17q21),通过诱导抑癌基因CYLD20的表达进而诱发细胞凋亡,该基因突变导致其编码蛋白缺失,被认为与脑膜瘤的侵袭性增加相关[96,97]。SMARCE1突变型脑膜瘤好发于脊髓[98]。透明细胞型脑膜瘤中SMARCE1突变率高达97%,在诊断透明细胞型脑膜瘤中具有特异性,第5版指南将SMARCE1突变纳入透明细胞型脑膜瘤的判定依据[2,98,99,100]。SMARCE1突变具有一定的遗传易感性,对于伴该基因突变的多发型透明细胞型脑膜瘤患者(尤其为年轻患者)或其亲属进行该基因突变筛查,有利于对患者脑膜瘤复发及其亲属患该类型脑膜瘤的风险分级作出评估[101]。
推荐意见:推荐脑膜瘤患者行SMARCE1检测(Ⅰ级推荐,2A类证据)。
9.BAP1突变:
BAP1编码BRCA1相关蛋白1,在人体正常细胞中通过结合BRCA1的环指域发挥抑制肿瘤的作用;该蛋白参与转录调节、细胞周期、生长调节、DNA损伤修复和染色体动力学[102]。目前认为,BAP1突变仅存在于高级别脑膜瘤中,以横纹肌型最常见,第5版指南已将BAP1突变纳入横纹肌型脑膜瘤的判定参考依据[2,103]。部分患者可同时伴随BAP1胚突变以及肿瘤易感综合征,这类患者易在55岁前罹患恶性间皮瘤、葡萄膜黑色素瘤和皮肤黑色素瘤[104]。与BAP1野生型相比,BAP1突变型脑膜瘤患者的临床预后更差,易多次复发且生存期更短[103,105]。
推荐意见:推荐脑膜瘤患者术后行BAP1检测(Ⅰ级推荐,2A类证据);临床上诊断为横纹肌型脑膜瘤的患者建议进一步行BAP1胚系检测,并对其家族史进行详细评估(Ⅲ级推荐,2B类证据)。
10.DMD突变:
DMD编码抗肌萎缩蛋白,该基因胚系突变是引起杜兴肌营养不良的驱动因素[106]。DMD失活在多种实体瘤发生及进展中发挥重要作用[107,108,109,110]。在高级别脑膜瘤样本中,DMD失活与患者较短的PFS及OS相关,是脑膜瘤患者预后不良的独立危险因素[111]。Paramasivam等[112]发现,DMD异常仅发生于NF2突变型脑膜瘤中。然而,DMD在脑膜瘤发生、发展中的作用及其与患者其他临床预后因素的相关性尚需进一步深入研究。
推荐意见:推荐脑膜瘤患者术后行DMD基因检测(Ⅱ级推荐,2B类证据)。
11.PBRM1突变:
PBRM1为肿瘤抑癌基因,编码SWI/SNF复合物BAF180亚基,参与调控肿瘤细胞的增殖和迁移[113]。约40%肾透明细胞癌以及乳头状肾癌和膀胱癌中存在PBRM1异常[114,115]。乳头型脑膜瘤中(WHO 3级,第5版指南判定标准已更新)存在PBRM1高频突变,在WHO 2级和3级脑膜瘤中占87.5% [57,116]。然而,PBRM1异常是否与脑膜瘤患者的临床预后相关,尚待进一步研究。
推荐意见:建议脑膜瘤患者术后行PBRM1检测(Ⅲ级推荐,3类证据)。
12.POLR2A突变:
POLR2A突变仅存在于低级别脑膜瘤中,约占6%,POLR2AL438H和POLR2AQ403K为其常见突变位点[48]。存在该类型突变的脑膜瘤多位于前颅底中线部位,以鞍结节脑膜瘤最为常见[12,48]。POLR2A突变型脑膜瘤多见于女性患者,复发风险较其他类型低[13,53,117]。Okano等[118]的单中心临床研究显示,POLR2A突变型脑膜瘤患者的复发率为29.4%,平均复发时间为45.6个月。该研究指出,POLR2A突变是独立于Simpson分级的脑膜瘤复发危险因素,且是WHO分级1级的颅底脑膜瘤复发的有效预测因素。
推荐意见:建议脑膜瘤患者术后行POLR2A检测(Ⅲ级推荐,2B类证据)。
(三)表观遗传学异常
1.H3K27me3异常:
组蛋白是由核心蛋白组成的高度保守的蛋白,与DNA共同构成核小体。组蛋白修饰不仅可逆性抑制或促进基因转录,而且还可以影响DNA修复、复制、干细胞形成和细胞状态变化等过程。H3K27me3与基因抑制密切相关,在颅内肿瘤发生、发展过程中发挥重要作用[119,120]。在WHO 1级和2级脑膜瘤样本中,H3K27me3缺失可增加肿瘤复发的风险[121]。2018年,Katz等[122]报道了一项纳入232例脑膜瘤样本的研究结果,发现H3K27me3缺失可增加脑膜瘤临床复发风险,且其与WHO 1级和2级脑膜瘤患者的不良临床预后相关。另一项多中心回顾性研究中纳入181例脑膜瘤样本,通过对石蜡切片进行H3K27me3免疫组织化学染色以及临床变量分析,显示在WHO 1级和2级脑膜瘤样本中,H3K27me3缺失可增加肿瘤复发的风险[121]。
推荐意见:推荐脑膜瘤患者行H3K27me3检测(Ⅰ级推荐,2A类证据);建议存在H3K27me3表达缺失的患者术后5年内至少每6个月随访1次(Ⅲ级推荐,3类证据)。
2.TIMP3甲基化:
DNA甲基化是最早被发现、也是研究最深入的表观遗传调控机制之一。DNA甲基化由DNA甲基转移酶(DNMT)家族催化,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合1个甲基基团。DNA甲基化能引起染色质结构、DNA构象、DNA稳定性及DNA与蛋白质相互作用方式的改变,从而控制基因表达[123]。约10%的脑膜瘤患者存在TIMP3、CDKN2A及TP73高度甲基化[124]。TIMP3高度甲基化将导致其转录产物下调而丧失抑癌活性[125]。约40%~60%的高级别脑膜瘤患者存在TIMP3高度甲基化,这部分患者常在接受治疗后短期内快速复发[25,124]。由于TIMP3位于22号染色体(22q12),几乎所有TIMP3高度甲基化的脑膜瘤患者都伴随22q等位基因丢失[125]。Olar等[44]通过全局DNA甲基化数据聚类分析后认为,脑膜瘤能够被分为与PFS相关的两组截然不同的亚型。同样,Sahm等[14]根据DNA甲基化聚类数据将脑膜瘤分为2个主要类别,其中包括6种亚型,不同亚型具有截然不同的基因组特征和临床表现。这些初步研究表明,表观遗传特征可能与肿瘤的复发高度相关,临床工作中可以作为高级别脑膜瘤早期诊断的分子生物学标志物,也可作为脑膜瘤恶变和早期癌变病理学诊断的补充[126]。
推荐意见:推荐脑膜瘤患者术后行TIMP3甲基化检测(Ⅱ级推荐,2B类证据);建议存在TIMP3甲基化的患者术后5年内至少每6个月随访1次(Ⅲ级推荐,3类证据)。
3.TP73启动子甲基化:
人类TP73位于1p36.32,属于TP53同源家族基因,基因序列与TP53高度相似,但TP73在初发肿瘤的突变率仅为0 ∶6%[127]。高级别脑膜瘤患者中,70%~80%存在TP73启动子甲基化,但这一现象在低级别脑膜瘤患者中并不常见[128],说明TP73启动子甲基化在高级别脑膜瘤中具有一定特异性。而Lomas等[129]认为,脑膜瘤TP73启动子甲基化约为20%,与肿瘤级别不存在相关性。Bello等[124]发现,TP73启动子甲基化率在WHO 1~3级脑膜瘤患者中分别为13%(9/68)、18.35%(5/27)和33%(1/3)。然而这2项研究中仅纳入3例WHO 3级脑膜瘤样本,且采用不同的甲基化引物序列进行PCR检测,研究结果可能存在偏移[124,129]。因此,对TP73启动子甲基化与脑膜瘤发生及发展的关系还需开展更多的研究。
推荐意见:推荐脑膜瘤患者行TP73启动子甲基化检测(Ⅱ级推荐,2B类证据);建议存在TP73启动子甲基化的患者术后5年内每6个月至少随访1次(Ⅲ级推荐,3类证据)。
七、其他实体瘤获批治疗靶点与脑膜瘤临床特征的相关性及其在术后放疗、药物治疗和随访中发挥的作用
(一)激素受体
性激素受体[雌激素受体(estrogen receptor,ER)、孕激素受体(progesterone receptor,PR)、雄激素受体(androgen receptor, AR)、生长抑素受体2(somatostatin receptor 2, SSTR2)]与脑膜瘤患者临床预后的相关性尚无定论[130,131,132,133]。Hua等[131]发现,ER高表达与WHO 3级脑膜瘤患者的不良预后相关。然而,在数项Ⅱ期临床试验中均未观察到应用ER抑制剂他莫昔芬可使脑膜瘤患者生存获益[134,135,136]。PR在脑膜瘤中的表达情况在不同文献中的报道中存在差异[137,138,139,140,141]。目前认为,PR表达与患者的良好临床预后相关[142,143]。一项Ⅲ期临床试验(SWOG S9005)结果显示,PR抑制剂米非司酮亦未能使脑膜瘤患者获益[132]。目前尚未检索到AR抑制剂治疗脑膜瘤的临床试验。
推荐意见:建议脑膜瘤患者术后行ER和PR检测(Ⅲ级推荐,2B类证据)。
SSTR2在脑膜瘤中特异性高表达,并在脑膜瘤的病理诊断学中起重要作用[137,138,139]。SSTR2与脑膜瘤的级别、病理学亚型以及患者的不良预后相关[144,145]。由于SSTR2在脑膜瘤中广泛表达,放射性标记SSTR2配体(如奥曲肽)在脑膜瘤的影像学诊断中逐步得到应用[146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161],且在部分脑膜瘤诊断中较增强MRI更显优势[162]。同时,以SSTR2作为脑膜瘤药物治疗靶点的相关研究也在逐步开展。但遗憾的是,大部分小样本Ⅱ期临床试验结果显示,单独使用生长抑素类似物奥曲肽或帕瑞肽对脑膜瘤的治疗效果十分有限[163,164,165]。一项纳入34例次全切除脑膜瘤样本的Ⅱ期临床试验显示,Yttrium-90-DOTATOC和lutetium-DOTATOC靶向SSTR2治疗脑膜瘤时,核素摄取率越高,治疗效果越好[166]。此外,2021年Swiss Cancer League Dominic正在开展177Lu-DOTA-JR11治疗脑膜瘤的Ⅰ期临床研究(NCT04997317),相关结果尚未公布。
推荐意见:推荐脑膜瘤患者行SSTR2检测(Ⅰ级推荐,2A类证据)。推荐SSTR2异常表达的脑膜瘤患者行核素标记奥曲肽显像(Ⅱ级推荐,2B类证据)。
(二)酪氨酸激酶受体(tyrosine kinase receptor,TKR)
TKR是一种跨膜蛋白,能够促进组织细胞与其相邻细胞间的相互作用。TKR主要包括EGFR、血管内皮细胞生长因子受体(vascular endothelial growth factor receptor,VEGFR)和血小板衍生生长因子受体(platelet-derived growth factor receptor,PDGFR),在脑膜瘤中均有不同程度的表达[167]。TKR抑制剂可以通过抑制肿瘤细胞增殖、缩小肿瘤体积和减轻瘤周水肿等机制,从而改善患者的临床预后[168]。
EGFR在脑膜瘤中存在不同程度的表达,往往低级别脑膜瘤中的表达程度更高,但其与患者的临床预后尚无明确的相关性[169,170,171]。EGFR抑制剂吉非替尼或厄洛替尼对脑膜瘤患者的PFS和OS无显著性改善[172]。Osorio等[173]发现,拉帕替尼对NF2相关性脑膜瘤有一定控制效果,但仍需开展随机对照研究进一步验证。不同级别的脑膜瘤均存在不同程度的VEGFR表达,VEGFR高表达多与肿瘤的高级别和患者较短的PFS有关[174,175,176,177,178],提示VEGFR抑制剂可能对难治性脑膜瘤有一定的治疗效果。Kaley等[179]发现,舒尼替尼对高级别脑膜瘤具有一定控制效果,中位PFS达5.2个月(95% CI: 2.8~8.3个月),中位OS达24.6个月(95% CI: 16.5~38.4个月);该药物也具有瘤内出血、血栓性微血管病变和胃肠穿孔等不良反应。贝伐珠单抗通过影响VEGF的相关生物学作用,包括血管的渗透性、增生以及内皮细胞迁移和存活,达到抑制肿瘤血管生成、生长以及转移的效果[180,181,182,183]。目前认为,贝伐珠单抗能够在一定程度上延缓脑膜瘤术后生长[11,59,184]。此外,目前仍有3项Ⅱ期临床试验正在开展,分别对采用贝伐珠单抗(NCT01125046)、贝伐珠单抗联合电场治疗(NCT02847559),以及贝伐珠单抗联合PD-1抑制剂帕博利珠单抗(NCT03279692)治疗复发、进展型脑膜瘤进行疗效评估。PDGFR在不同级别脑膜瘤中也存在一定程度表达,然而其抑制剂未对脑膜瘤显示出良好的治疗效果[185,186,187]。
推荐意见:对于VEGFR表达阳性的脑膜瘤患者,在外科手术或联合辅助放疗手段仍难以控制肿瘤复发、进展的情况下,推荐采用贝伐珠单抗治疗(Ⅱ级推荐,2A类证据)。
八、局限性
本共识在第5版指南更新的基础上,重点关注脑膜瘤关键分子生物标志物在临床诊疗过程中的应用;根据几次修订会的专家意见修改,仍存在如下局限性:(1)本共识仅根据现阶段能够检索到的证据,对能够形成共识的专家意见进行推荐,因此无法完整涵盖或解决脑膜瘤患者在临床诊疗过程中,包括术前诊断、术后放化疗决策、预后评估和病情监测等方面涉及到的所有问题。(2)部分生物标志物在脑膜瘤研究中亦有少量报道,但由于这类标志物与患者的临床预后相关性尚待明确,因此暂未将其纳入本次共识推荐。(3)脑膜瘤分子生物学特征相关研究近年来进展迅速,不断有新的研究报道,因此本共识中的推荐意见存在一定时效性(需要定期更新)。上述局限性问题将根据国内外研究进展在后续工作中逐步解决。
九、结语
本共识在传统病理学分类基础上,将目前已知的脑膜瘤基因、蛋白质层面、表观遗传学层面的信息与临床特征相结合,以进一步优化脑膜瘤诊断体系(表2)。本共识将在后续工作中不断更新和完善,进一步推进脑膜瘤精准化治疗、提高患者的临床预后。
表2
不同部位、病理学级别(2021年)、脑膜瘤分子标志物检测推荐及辅助治疗方案
共同执笔 邓佼娇(复旦大学附属华山医院)、华领洋(复旦大学附属华山医院)
共识专家组成员(按姓氏汉语拼音排序)卞留贯(上海交通大学医学院附属瑞金医院)、陈礼刚(西南医科大学附属医院)、陈宏(复旦大学附属华山医院)、程宏伟(安徽医科大学第一附属医院)、窦长武(内蒙古医科大学附属医院)、更·党木仁加甫(新疆医科大学第一附属医院)、宫晔(复旦大学附属华山医院)、洪涛(南昌大学第一附属医院)、吉宏明(山西省人民医院)、蒋宇钢(中南大学湘雅二医院)、兰青(苏州大学附属第二医院)、李刚(山东大学齐鲁医院)、刘志雄(中南大学湘雅医院)、毛颖(复旦大学附属华山医院)、漆松涛(南方医科大学南方医院)、屈延(空军军医大学第二附属医院)、石松生(福建医科大学附属协和医院)、孙晓川(重庆医科大学附属第一医院)、王海军(中山大学附属第一医院)、王硕(首都医科大学附属北京天坛医院)、余化霖(昆明医科大学第一附属医院)、岳树源(天津医科大学总医院)、尤永平(江苏省人民医院)、张建民(浙江大学医学院附属第二医院)、钟平(复旦大学附属华山医院)、张晓华(上海交通大学医学院附属仁济医院)
利益冲突
本共识中文版发表所需版面费由阔然生物医药科技(上海)有限公司和泛生子基因科技(北京)有限公司共同赞助,上述企业相关人员全程未参与本共识的制定、撰写及发表
参考文献
[1]
OstromQT, CioffiG, WaiteK, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018[J]. Neuro Oncol, 2021,23(12Suppl 2):iii1-iii105. DOI: 10.1093/neuonc/noab200.
[2]
LouisDN, PerryA, WesselingP, et al. The 2021 WHO classi-fication of tumors of the central nervous system: a summary[J]. Neuro Oncol, 2021,23(8):1231-1251. DOI: 10.1093/neuonc/noab106.
[3]
NassiriF, LiuJ, PatilV, et al. A clinically applicable integrative molecular classification of meningiomas[J]. Nature, 2021,597(7874):119-125. DOI: 10.1038/s41586-021-03850-3.
[4]
MaasS, StichelD, HielscherT, et al. Integrated molecular-morphologic meningioma classification: a multicenter retrospective analysis, retrospectively and prospectively validated[J]. J Clin Oncol, 2021,39(34):3839-3852. DOI: 10.1200/JCO.21.00784.
[5]
ZulchKJ. Histological typing of tumours of the central nervous system[M]. Geneva: World Health Organization, 1979.
[6]
KleihuesP, BurgerPC, ScheithauerBW. The new WHO classification of brain tumours[J]. Brain Pathol, 1993,3(3):255-268. DOI: 10.1111/j.1750-3639.1993.tb00752.x.
[7]
International Agency for Research on Cancer; KleihuesP, CaveneeWK. World Health Organization classification of tumours: pathology and genetics of tumours of the nervous system[M]. Lyon: IARC Press, 2000.
[8]
LouisDN, OhgakiH, WiestlerOD, et al. The 2007 WHO classification of tumours of the central nervous system[J]. Acta Neuropathol, 2007,114(2):97-109. DOI: 10.1007/s00401-007-0243-4.
[9]
LouisDN, PerryA, ReifenbergerG, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016,131(6):803-820. DOI: 10.1007/s00401-016-1545-1.
[10]
WHO Classification of Tumours Editorial Board. World Health Organization classification of tumours of the central nervous system[M]. 5th. Lyon: International Agency for Research on Cancer,2021.
[11]
GoldbrunnerR, StavrinouP, JenkinsonMD, et al. EANO guideline on the diagnosis and management of meningiomas[J]. Neuro Oncol, 2021,23(11):1821-1834. DOI: 10.1093/neuonc/noab150.
[12]
ClarkVE, Erson-OmayEZ, SerinA, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO[J]. Science, 2013,339(6123):1077-1080. DOI: 10.1126/science.1233009.
[13]
YoungbloodMW, DuranD, MontejoJD, et al. Correlations between genomic subgroup and clinical features in a cohort of more than 3000 meningiomas[J]. J Neurosurg, 2020,133(5):1345-1354.
[14]
SahmF, SchrimpfD, StichelD, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis[J]. Lancet Oncol, 2017,18(5):682-694. DOI: 10.1016/S1470-2045(17)30155-9.
[15]
PatelAJ, WanYW, Al-OuranR, et al. Molecular profiling predicts meningioma recurrence and reveals loss of DREAM complex repression in aggressive tumors[J]. Proc Natl Acad Sci U S A, 2019,116(43):21715-21726. DOI: 10.1073/pnas.1912858116.
[16]
DriverJ, HoffmanSE, TavakolS, et al. A molecularly integ-rated grade for meningioma[J]. Neuro Oncol, 2022,24(5):796-808. DOI: 10.1093/neuonc/noab213.
[17]
ChenYP, IsmailaN, ChuaM, et al. Chemotherapy in combination with radiotherapy for definitive-intent treatment of stage ii-iva nasopharyngeal carcinoma: CSCO and ASCO guideline[J]. J Clin Oncol, 2021,39(7):840-859. DOI: 10.1200/JCO.20.03237.
[18]
MichaelA, ErioZ. Gazing into the oracle: the Delphi method and its application to social policy and public health[M].London:Kingsley Publishers, 1996.
[19]
SeizingerBR, de la MonteS, AtkinsL, et al. Molecular genetic approach to human meningioma: loss of genes on chromosome 22[J]. Proc Natl Acad Sci USA, 1987,84(15):5419-5423. DOI: 10.1073/pnas.84.15.5419.
[20]
GoldbrunnerR, StavrinouP, JenkinsonMD, et al. EANO guideline on the diagnosis and management of meningiomas[J]. Neuro Oncol, 2021,23(11):1821-1834. DOI: 10.1093/neuonc/noab150.
[21]
OkanoA, MiyawakiS, HongoH, et al. Associations of pathological diagnosis and genetic abnormalities in meningiomas with the embryological origins of the meninges[J]. Sci Rep, 2021,11(1):6987. DOI: 10.1038/s41598-021-86298-9.
[22]
RuttledgeMH, SarrazinJ, RangaratnamS, et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas[J]. Nat Genet, 1994,6(2):180-184. DOI: 10.1038/ng0294-180.
[23]
SuppiahS, NassiriF, BiWL, et al. Molecular and translational advances in meningiomas[J]. Neuro Oncol, 2019,21(Suppl 1):i4-i17. DOI: 10.1093/neuonc/noy178.
[24]
BiWL, GreenwaldNF, AbedalthagafiM, et al. Genomic landscape of high-grade meningiomas[J]. NPJ Genom Med, 2017,2:15.DOI: 10.1038/s41525-017-0014-7.
[25]
PfistererWK, HankNC, PreulMC, et al. Diagnostic and prognostic significance of genetic regional heterogeneity in meningiomas[J]. Neuro Oncol, 2004,6(4):290-299. DOI: 10.1215/S1152851704000158.
[26]
HiltonDA, ShivaneA, KirkL, et al. Activation of multiple growth factor signalling pathways is frequent in meningiomas[J]. Neuropathology, 2016,36(3):250-261. DOI: 10.1111/neup.12266.
[27]
HongW, ShanC, YeM, et al. Case report: identification of a novel GNAS mutation and 1p/22q co-deletion in a patient with multiple recurrent meningiomas sensitive to sunitinib[J]. Front Oncol, 2021,11:737523. DOI: 10.3389/fonc.2021.737523.
[28]
AsthagiriAR, ParryDM, ButmanJA, et al. Neurofibromatosis type 2[J]. Lancet, 2009,373(9679):1974-1986. DOI: 10.1016/S0140-6736(09)60259-2.
[29]
CaiDX, BanerjeeR, ScheithauerBW, et al. Chromosome 1p and 14q FISH analysis in clinicopathologic subsets of meningioma: diagnostic and prognostic implications[J]. J Neuropathol Exp Neurol, 2001,60(6):628-636. DOI: 10.1093/jnen/60.6.628.
[30]
KakkarA, KumarA, DasA, et al. 1p/14q co-deletion: A determinant of recurrence in histologically benign meningiomas[J]. Indian J Pathol Microbiol, 2015,58(4):433-438. DOI: 10.4103/0377-4929.168852.
[31]
LinslerS, KraemerD, DriessC, et al. Molecular biological determinations of meningioma progression and recurrence[J]. PLoS One, 2014,9(4):e94987. DOI: 10.1371/journal.pone.0094987.
[32]
NagasakaT, GunjiM, HosokaiN, et al. Fluorescent in situ hybridization 1p/19q deletion/imbalance analysis of low-grade and atypical meningiomas[J]. Neurol Med Chir (Tokyo), 2010,50(1):27-32; discussion 32. DOI: 10.2176/nmc.50.27.
[33]
SayaguésJM, TaberneroMD, MaílloA. Cytogenetic alterations in meningioma tumors and their impact on disease outcome[J]. Med Clin (Barc), 2007,128(6):226-232. DOI: 10.1016/s0025-7753(07)72543-5.
[34]
OchW, SzmudaT, SikorskaB, et al. Recurrence-associated chromosomal anomalies in meningiomas: single-institution study and a systematic review with meta-analysis[J]. Neurol Neurochir Pol, 2016,50(6):439-448. DOI: 10.1016/j.pjnns.2016.08.003.
[35]
LamszusK, KluweL, MatschkeJ, et al. Allelic losses at 1p, 9q, 10q, 14q, and 22q in the progression of aggressive meningiomas and undifferentiated meningeal sarcomas[J]. Cancer Genet Cytogenet, 1999,110(2):103-110. DOI: 10.1016/s0165-4608(98)00209-x.
[36]
KrayenbühlN, PravdenkovaS, Al-MeftyO. De novo versus transformed atypical and anaplastic meningiomas: comparisons of clinical course, cytogenetics, cytokinetics, and outcome[J]. Neurosurgery, 2007,61(3):495-503; discussion 503-504. DOI: 10.1227/01.NEU.0000290895.92695.22.
[37]
LusisEA, WatsonMA, ChicoineMR, et al. Integrative genomic analysis identifies NDRG2 as a candidate tumor suppressor gene frequently inactivated in clinically aggressive meningioma[J]. Cancer Res, 2005,65(16):7121-7126. DOI: 10.1158/0008-5472.CAN-05-0043.
[38]
RogersCL, WonM, VogelbaumMA, et al. High-risk menin-gioma: initial outcomes from NRG oncology/RTOG 0539[J]. Int J Radiat Oncol Biol Phys, 2020,106(4):790-799. DOI: 10.1016/j.ijrobp.2019.11.028.
[39]
BarberaS, San MiguelT, Gil-BensoR, et al. Genetic changes with prognostic value in histologically benign meningiomas[J]. Clin Neuropathol, 2013,32(4):311-317. DOI: 10.5414/NP300580.
[40]
PfistererWK, HendricksWP, ScheckAC, et al. Fluorescent in situ hybridization and ex vivo 1H magnetic resonance spectros-copic examinations of meningioma tumor tissue: is it possible to identify a clinically-aggressive subset of benign meningiomas?[J]. Neurosurgery, 2007,61(5):1048-1059; discussion 1060-1061. DOI: 10.1227/01.neu.0000303201.62123.5c.
[41]
Lopez-GinesC, Cerda-NicolasM, Gil-BensoR, et al. Asso-ciation of loss of 1p and alterations of chromosome 14 in meningioma progression[J]. Cancer Genet Cytogenet, 2004,148(2):123-128. DOI: 10.1016/s0165-4608(03)00279-6.
[42]
BalikV, SrovnalJ, SullaI, et al. MEG3: a novel long noncoding potentially tumour-suppressing RNA in meningiomas[J]. J Neurooncol, 2013,112(1):1-8. DOI: 10.1007/s11060-012-1038-6.
[43]
GuptaN, ChackoG, ChackoAG, et al. Fluorescence in situ hybridization for chromosome 14q deletion in subsets of meningioma segregated by MIB-1 labelling index[J]. Neurol India, 2016,64(6):1256-1263. DOI: 10.4103/0028-3886.193768.
[44]
OlarA, WaniKM, WilsonCD, et al. Global epigenetic profiling identifies methylation subgroups associated with recurrence-free survival in meningioma[J]. Acta Neuropathol, 2017,133(3):431-444. DOI: 10.1007/s00401-017-1678-x.
[45]
WeberRG, BoströmJ, WolterM, et al. Analysis of genomic alterations in benign, atypical, and anaplastic meningiomas: toward a genetic model of meningioma progression[J]. Proc Natl Acad Sci U S A, 1997,94(26):14719-14724. DOI: 10.1073/pnas.94.26.14719.
[46]
BarresiV, SimboloM, FioravanzoA, et al. Molecular profiling of 22 primary atypical meningiomas shows the prognostic significance of 18q heterozygous loss and CDKN2A/B homozygous deletion on recurrence-free survival[J]. Cancers (Basel), 2021,13(4)DOI: 10.3390/cancers13040903.
[47]
BrastianosPK, HorowitzPM, SantagataS, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations[J]. Nat Genet, 2013,45(3):285-289. DOI: 10.1038/ng.2526.
[48]
ClarkVE, HarmanciAS, BaiH, et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas[J]. Nat Genet, 2016,48(10):1253-1259. DOI: 10.1038/ng.3651.
[49]
WellenreutherR, KrausJA, LenartzD, et al. Analysis of the neurofibromatosis 2 gene reveals molecular variants of meningioma[J]. Am J Pathol, 1995,146(4):827-832.
[50]
YuzawaS, NishiharaH, YamaguchiS, et al. Clinical impact of targeted amplicon sequencing for meningioma as a practical clinical-sequencing system[J]. Mod Pathol, 2016,29(7):708-716. DOI: 10.1038/modpathol.2016.81.
[51]
GupteTP, LiC, JinL, et al. Clinical and genomic factors associated with seizures in meningiomas[J]. J Neurosurg, 2021, 135(3): 835-844. DOI: 10.3171/2020.7.JNS201042.
[52]
DengJ, HuaL, HanT, et al. The CREB-binding protein inhibitor ICG-001: a promising therapeutic strategy in sporadic meningioma with NF2 mutations[J]. Neurooncol Adv, 2020,2(1):vdz055. DOI: 10.1093/noajnl/vdz055.
[53]
YoungbloodMW, MiyagishimaDF, JinL, et al. Associations of meningioma molecular subgroup and tumor recurrence[J]. Neuro Oncol, 2021,23(5):783-794. DOI: 10.1093/neuonc/noaa226.
[54]
López-LagoMA, OkadaT, MurilloMM, et al. Loss of the tumor suppressor gene NF2, encoding merlin, constitutively activates integrin-dependent mTORC1 signaling[J]. Mol Cell Biol, 2009,29(15):4235-4249. DOI: 10.1128/MCB.01578-08.
[55]
JamesMF, HanS, PolizzanoC, et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth[J]. Mol Cell Biol, 2009,29(15):4250-4261. DOI: 10.1128/MCB.01581-08.
[56]
WilliamsEA, SantagataS, WakimotoH, et al. Distinct genomic subclasses of high-grade/progressive meningiomas: NF2-associated, NF2-exclusive, and NF2-agnostic[J]. Acta Neuropathol Commun, 2020,8(1):171. DOI: 10.1186/s40478-020-01040-2.
[57]
PeyreM, Stemmer-RachamimovA, Clermont-TaranchonE, et al. Meningioma progression in mice triggered by Nf2 and Cdkn2ab inactivation[J]. Oncogene, 2013,32(36):4264-4272. DOI: 10.1038/onc.2012.436.
[58]
PachowD, AndraeN, KlieseN, et al. mTORC1 inhibitors suppress meningioma growth in mouse models[J]. Clin Cancer Res, 2013,19(5):1180-1189. DOI: 10.1158/1078-0432.CCR-12-1904.
[59]
ShihKC, ChowdharyS, RosenblattP, et al. A phase II trial of bevacizumab and everolimus as treatment for patients with refractory, progressive intracranial meningioma[J]. J Neurooncol, 2016,129(2):281-288. DOI: 10.1007/s11060-016-2172-3.
[60]
GraillonT, SansonM, CampelloC, et al. Everolimus and octreotide for patients with recurrent meningioma: results from the phase II CEVOREM trial[J]. Clin Cancer Res, 2020,26(3):552-557. DOI: 10.1158/1078-0432.CCR-19-2109.
[61]
CardonaAF, Ruiz-PatiñoA, Zatarain-BarrónZL, et al. Systemic management of malignant meningiomas: a comparative survival and molecular marker analysis between Octreotide in combination with Everolimus and Sunitinib[J]. PLoS One, 2019,14(6):e0217340. DOI: 10.1371/journal.pone.0217340.
[62]
KarajannisMA, MauguenA, MalokuE, et al. Phase 0 clinical trial of everolimus in patients with vestibular Schwannoma or meningioma[J]. Mol Cancer Ther, 2021,20(9):1584-1591. DOI: 10.1158/1535-7163.MCT-21-0143.
[63]
BrastianosPK, TwohyEL, GerstnerER, et al. Alliance A071401: phase ii trial of focal adhesion kinase inhibition in meningiomas with somatic NF2 mutations[J]. J Clin Oncol, 2023,41(3):618-628. DOI: 10.1200/JCO.21.02371.
[64]
HuangFW, HodisE, XuMJ, et al. Highly recurrent TERT promoter mutations in human melanoma[J]. Science, 2013,339(6122):957-959. DOI: 10.1126/science.1229259.
[65]
MailloA, OrfaoA, SayaguesJM, et al. New classification scheme for the prognostic stratification of meningioma on the basis of chromosome 14 abnormalities, patient age, and tumor histopathology[J]. J Clin Oncol, 2003,21(17):3285-3295. DOI: 10.1200/JCO.2003.07.156.
[66]
KoelscheC, SahmF, CapperD, et al. Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system[J]. Acta Neuropathol, 2013,126(6):907-915. DOI: 10.1007/s00401-013-1195-5.
[67]
RemkeM, RamaswamyV, PeacockJ, et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma[J]. Acta Neuropathol, 2013,126(6):917-929. DOI: 10.1007/s00401-013-1198-2.
[68]
YungWK, BratDJ, VerhaakRG, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas[J]. N Engl J Med, 2015,372(26):2481-2498. DOI: 10.1056/NEJMoa1402121.
[69]
HolleczekB, ZampellaD, UrbschatS, et al. Incidence, mortality and outcome of meningiomas: a population-based study from Germany[J]. Cancer Epidemiol, 2019,62:101562. DOI: 10.1016/j.canep.2019.07.001.
[70]
SahmF, SchrimpfD, OlarA, et al. TERT promoter mutations and risk of recurrence in meningioma[J]. J Natl Cancer Inst, 2016,108(5):div377. DOI: 10.1093/jnci/djv377.
[71]
GoutagnyS, NaultJC, MalletM, et al. High incidence of activating TERT promoter mutations in meningiomas undergoing malignant progression[J]. Brain Pathol, 2014,24(2):184-189. DOI: 10.1111/bpa.12110.
[72]
MirianC, Duun-HenriksenAK, JuratliT, et al. Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis[J]. J Neurol Neurosurg Psychiatry, 2020,91(4):378-387. DOI: 10.1136/jnnp-2019-322257.
[73]
BiczokA, KrausT, SuchorskaB, et al. TERT promoter mutation is associated with worse prognosis in WHO grade II and III meningiomas[J]. J Neurooncol, 2018,139(3):671-678. DOI: 10.1007/s11060-018-2912-7.
[74]
DengJ, SunS, ChenJ, et al. TERT alterations predict tumor progression in de novo high-grade meningiomas following adjuvant radiotherapy[J]. Front Oncol, 2021,11:747592. DOI: 10.3389/fonc.2021.747592.
[75]
DengMY, SturmD, PfaffE, et al. Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B[J]. Nat Commun, 2021,12(1):5530. DOI: 10.1038/s41467-021-25708-y.
[76]
GuyotA, DuchesneM, RobertS, et al. Analysis of CDKN2A gene alterations in recurrent and non-recurrent meningioma[J]. J Neurooncol, 2019,145(3):449-459. DOI: 10.1007/s11060-019-03333-6.
[77]
SieversP, HielscherT, SchrimpfD, et al. CDKN2A/B homozygous deletion is associated with early recurrence in meningiomas[J]. Acta Neuropathol, 2020,140(3):409-413. DOI: 10.1007/s00401-020-02188-w.
[78]
HoxhajG, ManningBD. The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism[J]. Nat Rev Cancer, 2020,20(2):74-88. DOI: 10.1038/s41568-019-0216-7.
[79]
YuzawaS, NishiharaH, TanakaS. Genetic landscape of meningioma[J]. Brain Tumor Pathol, 2016,33(4):237-247. DOI: 10.1007/s10014-016-0271-7.
[80]
JungwirthG, WartaR, BeynonC, et al. Intraventricular meningiomas frequently harbor NF2 mutations but lack common genetic alterations in TRAF7, AKT1, SMO, KLF4, PIK3CA, and TERT[J]. Acta Neuropathol Commun, 2019,7(1):140. DOI: 10.1186/s40478-019-0793-4.
[81]
LeeYS, LeeYS. Molecular characteristics of meningiomas[J]. J Pathol Transl Med, 2020,54(1):45-63. DOI: 10.4132/jptm.2019.11.05.
[82]
WilliamsSR, JuratliTA, CastroBA, et al. Genomic analysis of posterior fossa meningioma demonstrates frequent AKT1 E17K mutations in foramen magnum meningiomas[J]. J Neurol Surg B Skull Base, 2019,80(6):562-567. DOI: 10.1055/s-0038-1676821.
[83]
SahmF, BisselJ, KoelscheC, et al. AKT1E17K mutations cluster with meningothelial and transitional meningiomas and can be detected by SFRP1 immunohistochemistry[J]. Acta Neuropathol, 2013,126(5):757-762. DOI: 10.1007/s00401-013-1187-5.
[84]
KarsyM, AzabMA, Abou-Al-ShaarH, et al. Clinical potential of meningioma genomic insights: a practical review for neurosurgeons[J]. Neurosurg Focus, 2018,44(6):E10. DOI: 10.3171/2018.2.FOCUS1849.
[85]
BleekerFE, FelicioniL, ButtittaF, et al. AKT1(E17K) in human solid tumours[J]. Oncogene, 2008,27(42):5648-5650. DOI: 10.1038/onc.2008.170.
[86]
AbedalthagafiM, BiWL, AizerAA, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma[J]. Neuro Oncol, 2016,18(5):649-655. DOI: 10.1093/neuonc/nov316.
[87]
AlSahlawiA, AljelaifyR, MagrashiA, et al. New insights into the genomic landscape of meningiomas identified FGFR3 in a subset of patients with favorable prognoses[J]. Oncotarget, 2019,10(53):5549-5559. DOI: 10.18632/oncotarget.27178.
[88]
WellerM, RothP, SahmF, et al. Durable control of metastatic AKT1-mutant WHO grade 1 meningothelial meningioma by the AKT inhibitor, AZD5363[J]. J Natl Cancer Inst, 2017,109(3):1-4. DOI: 10.1093/jnci/djw320.
[89]
CopurMS, JonglerthamP. Alpelisib for PIK3CA-mutated advanced breast cancer[J]. N Engl J Med, 2019,381(7):686-687. DOI: 10.1056/NEJMc1907856.
[90]
YuzawaS, NishiharaH, YamaguchiS, et al. Clinical impact of targeted amplicon sequencing for meningioma as a practical clinical-sequencing system[J]. Mod Pathol, 2016,29(7):708-716. DOI: 10.1038/modpathol.2016.81.
[91]
BiWL, PrabhuVC, DunnIF. High-grade meningiomas: biology and implications[J]. Neurosurg Focus, 2018,44(4):E2. DOI: 10.3171/2017.12.FOCUS17756.
[92]
TolandA, HuntoonK, DahiyaSM. Meningioma: a pathology perspective[J]. Neurosurgery, 2021,89(1):11-21. DOI: 10.1093/neuros/nyab001.
[93]
AizerAA, AbedalthagafiM, BiWL, et al. A prognostic cytogenetic scoring system to guide the adjuvant management of patients with atypical meningioma[J]. Neuro Oncol, 2016,18(2):269-274. DOI: 10.1093/neuonc/nov177.
[94]
ReussDE, PiroRM, JonesDT, et al. Secretory meningiomas are defined by combined KLF4 K409Q and TRAF7 mutations[J]. Acta Neuropathol, 2013,125(3):351-358. DOI: 10.1007/s00401-013-1093-x.
[95]
GoldbrunnerR, MinnitiG, PreusserM, et al. EANO guidelines for the diagnosis and treatment of meningiomas[J]. Lancet Oncol, 2016,17(9):e383-391. DOI: 10.1016/S1470-2045(16)30321-7.
[96]
MittalP, RobertsC. The SWI/SNF complex in cancer - biology, biomarkers and therapy[J]. Nat Rev Clin Oncol, 2020,17(7):435-448. DOI: 10.1038/s41571-020-0357-3.
[97]
CollordG, TarpeyP, KurbatovaN, et al. An integrated genomic analysis of anaplastic meningioma identifies prognostic molecular signatures[J]. Sci Rep, 2018,8(1):13537. DOI: 10.1038/s41598-018-31659-0.
[98]
SmithMJ, O'SullivanJ, BhaskarSS, et al. Loss-of-function mutations in SMARCE1 cause an inherited disorder of multiple spinal meningiomas[J]. Nat Genet, 2013,45(3):295-298. DOI: 10.1038/ng.2552.
[99]
SieversP, SillM, BlumeC, et al. Clear cell meningiomas are defined by a highly distinct DNA methylation profile and mutations in SMARCE1[J]. Acta Neuropathol, 2021,141(2):281-290. DOI: 10.1007/s00401-020-02247-2.
[100]
SmithMJ, WallaceAJ, BennettC, et al. Germline SMARCE1 muta-tions predispose to both spinal and cranial clear cell meningiomas[J]. J Pathol, 2014,234(4):436-440. DOI: 10.1002/path.4427.
[101]
LuJQ, ReddyK. Letter: familial syndromes involving meningiomas provide mechanistic insight into sporadic disease[J]. Neurosurgery, 2019,85(2):E396. DOI: 10.1093/neuros/nyz135.
[102]
CarboneM, HarbourJW, BrugarolasJ, et al. Biological mechanisms and clinical significance of BAP1 mutations in human cancer[J]. Cancer Discov, 2020,10(8):1103-1120. DOI: 10.1158/2159-8290.CD-19-1220.
[103]
ShankarGM, AbedalthagafiM, VaubelRA, et al. Germline and somatic BAP1 mutations in high-grade rhabdoid meningiomas[J]. Neuro Oncol, 2017,19(4):535-545. DOI: 10.1093/neuonc/now235.
[104]
ChauC, van DoornR, van PoppelenNM, et al. Families with BAP1-tumor predisposition syndrome in the netherlands: path to identification and a proposal for genetic screening guidelines[J]. Cancers (Basel), 2019,11(8):1114.DOI: 10.3390/cancers11081114.
[105]
ShankarGM, SantagataS. BAP1 mutations in high-grade men-ingioma: implications for patient care[J]. Neuro Oncol, 2017,19(11):1447-1456. DOI: 10.1093/neuonc/nox094.
[106]
KunkelLM, HejtmancikJF, CaskeyCT, et al. Analysis of deletions in DNA from patients with Becker and Duchenne muscular dystrophy[J]. Nature, 1986,322(6074):73-77. DOI: 10.1038/322073a0.
[107]
ArbajianE, PulsF, AntonescuCR, et al. In-depth genetic analysis of sclerosing epithelioid fibrosarcoma reveals recurrent genomic alterations and potential treatment targets[J]. Clin Cancer Res, 2017,23(23):7426-7434. DOI: 10.1158/1078-0432.CCR-17-1856.
[108]
ChengJ, DemeulemeesterJ, WedgeDC, et al. Pan-cancer analysis of homozygous deletions in primary tumours uncovers rare tumour suppressors[J]. Nat Commun, 2017,8(1):1221. DOI: 10.1038/s41467-017-01355-0.
[109]
KörnerH, EpanchintsevA, BerkingC, et al. Digital karyotyping reveals frequent inactivation of the dystrophin/DMD gene in malignant melanoma[J]. Cell Cycle, 2007,6(2):189-198. DOI: 10.4161/cc.6.2.3733.
[110]
WangY, Marino-EnriquezA, BennettRR, et al. Dystrophin is a tumor suppressor in human cancers with myogenic programs[J]. Nat Genet, 2014,46(6):601-606. DOI: 10.1038/ng.2974.
[111]
JuratliTA, McCabeD, NayyarN, et al. DMD genomic deletions characterize a subset of progressive/higher-grade meningiomas with poor outcome[J]. Acta Neuropathol, 2018,136(5):779-792. DOI: 10.1007/s00401-018-1899-7.
[112]
ParamasivamN, HübschmannD, ToprakUH, et al. Mutational patterns and regulatory networks in epigenetic subgroups of meningioma[J]. Acta Neuropathol, 2019,138(2):295-308. DOI: 10.1007/s00401-019-02008-w.
[113]
ParamasivamN, HübschmannD, ToprakUH, et al. Mutational patterns and regulatory networks in epigenetic subgroups of meningioma[J]. Acta Neuropathol, 2019,138(2):295-308. DOI: 10.1007/s00401-019-02008-w.
[114]
Masliah-PlanchonJ, BiècheI, GuinebretièreJM, et al. SWI/SNF chromatin remodeling and human malignancies[J]. Annu Rev Pathol, 2015,10:145-171. DOI: 10.1146/annurev-pathol-012414-040445.
[115]
VarelaI, TarpeyP, RaineK, et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma[J]. Nature, 2011,469(7331):539-542. DOI: 10.1038/nature09639.
[116]
WilliamsEA, WakimotoH, ShankarGM, et al. Frequent inactivating mutations of the PBAF complex gene PBRM1 in meningioma with papillary features[J]. Acta Neuropathol, 2020,140(1):89-93. DOI: 10.1007/s00401-020-02161-7.
[117]
MawrinC, KochR, WaldtN, et al. A new amplicon-based gene panel for next generation sequencing characterization of meningiomas[J]. Brain Pathol, 2022,32(2):e13046. DOI: 10.1111/bpa.13046.
[118]
OkanoA, MiyawakiS, HongoH, et al. Associations of pathological diagnosis and genetic abnormalities in meningiomas with the embryological origins of the meninges[J]. Sci Rep, 2021,11(1):6987. DOI: 10.1038/s41598-021-86298-9.
[119]
KrugB, De JayN, HarutyunyanAS, et al. Pervasive H3K27 acetylation leads to ERV expression and a therapeutic vulnerability in H3K27M gliomas[J]. Cancer Cell, 2019,36(3):338-339. DOI: 10.1016/j.ccell.2019.08.012.
[120]
LarsonJD, KasperLH, PaughBS, et al. Histone H3.3 K27M accelerates spontaneous brainstem glioma and drives restricted changes in bivalent gene expression[J]. Cancer Cell, 2019,35(1):140-155.e7. DOI: 10.1016/j.ccell.2018.11.015.
[121]
NassiriF, WangJZ, SinghO, et al. Loss of H3K27me3 in meningiomas[J]. Neuro Oncol, 2021,23(8):1282-1291. DOI: 10.1093/neuonc/noab036.
[122]
KatzLM, HielscherT, LiechtyB, et al. Loss of histone H3K27me3 identifies a subset of meningiomas with increased risk of recurrence[J]. Acta Neuropathol, 2018,135(6):955-963. DOI: 10.1007/s00401-018-1844-9.
[123]
CapperD, JonesD, SillM, et al. DNA methylation-based classification of central nervous system tumours[J]. Nature, 2018,555(7697):469-474. DOI: 10.1038/nature26000.
[124]
BelloMJ, AmiñosoC, Lopez-MarinI, et al. DNA methylation of multiple promoter-associated CpG islands in meningiomas: relationship with the allelic status at 1p and 22q[J]. Acta Neuropathol, 2004,108(5):413-421. DOI: 10.1007/s00401-004-0911-6.
[125]
BarskiD, WolterM, ReifenbergerG, et al. Hypermethylation and transcriptional downregulation of the TIMP3 gene is associated with allelic loss on 22q12.3 and malignancy in meningiomas[J]. Brain Pathol, 2010,20(3):623-631. DOI: 10.1111/j.1750-3639.2009.00340.x.
[126]
Gonzalez-GomezP, BelloMJ, ArjonaD, et al. CpG island methylation of tumor-related genes in three primary central nervous system lymphomas in immunocompetent patients[J]. Cancer Genet Cytogenet, 2003,142(1):21-24. DOI: 10.1016/s0165-4608(02)00799-9.
[127]
LiuY, ChenC, XuZ, et al. Deletions linked to TP53 loss drive cancer through p53-independent mechanisms[J]. Nature, 2016,531(7595):471-475. DOI: 10.1038/nature17157.
[128]
NakaneY, NatsumeA, WakabayashiT, et al. Malignant transformation-related genes in meningiomas: allelic loss on 1p36 and methylation status of p73 and RASSF1A[J]. J Neurosurg, 2007,107(2):398-404. DOI: 10.3171/JNS-07/08/0398.
[129]
LomasJ, AmiñosoC, Gonzalez-GomezP, et al. Methylation status of TP73 in meningiomas[J]. Cancer Genet Cytogenet, 2004,148(2):148-151. DOI: 10.1016/s0165-4608(03)00244-9.
[130]
ClausEB, ParkPJ, CarrollR, et al. Specific genes expressed in association with progesterone receptors in meningioma[J]. Cancer Res, 2008,68(1):314-322. DOI: 10.1158/0008-5472.CAN-07-1796.
[131]
HuaL, ZhuH, LiJ, et al. Prognostic value of estrogen receptor in WHO Grade III meningioma: a long-term follow-up study from a single institution[J]. J Neurosurg, 2018,128(6):1698-1706. DOI: 10.3171/2017.2.JNS162566.
[132]
IplikciogluAC, HatibogluMA, OzekE, et al. Is progesteron receptor status really a prognostic factor for intracranial meningiomas?[J]. Clin Neurol Neurosurg, 2014,124:119-122. DOI: 10.1016/j.clineuro.2014.06.015.
[133]
GuevaraP, Escobar-ArriagaE, Saavedra-PerezD, et al. Angiogenesis and expression of estrogen and progesterone receptors as predictive factors for recurrence of meningioma[J]. J Neurooncol, 2010,98(3):379-384. DOI: 10.1007/s11060-009-0086-z.
[134]
MoazzamAA, WagleN, ZadaG. Recent developments in chemotherapy for meningiomas: a review[J]. Neurosurg Focus, 2013,35(6):E18. DOI: 10.3171/2013.10.FOCUS13341.
[135]
GoodwinJW, CrowleyJ, EyreHJ, et al. A phase II evaluation of tamoxifen in unresectable or refractory meningiomas: a Southwest Oncology Group study[J]. J Neurooncol, 1993,15(1):75-77. DOI: 10.1007/BF01050266.
[136]
JiY, RankinC, GrunbergS, et al. Double-blind phase Ⅲ randomized trial of the antiprogestin agent mifepristone in the treatment of unresectable meningioma: SWOG S9005[J]. J Clin Oncol, 2015,33(34):4093-4098. DOI: 10.1200/JCO.2015.61.6490.
[137]
TeluguRB, ChowhanAK, RukmangadhaN, et al. Estrogen and progesterone receptor in meningiomas: an immunohistochemical analysis[J]. J Cancer Res Ther, 2020,16(6):1482-1487. DOI: 10.4103/jcrt.JCRT_1075_16.
[138]
FakhrjouA, MeshkiniA, ShadrvanS. Status of Ki-67, estrogen and progesterone receptors in various subtypes of intracranial meningiomas[J]. Pak J Biol Sci, 2012,15(11):530-535. DOI: 10.3923/pjbs.2012.530.535.
[139]
KorhonenK, SalminenT, RaitanenJ, et al. Female predomi-nance in meningiomas can not be explained by differences in progesterone, estrogen, or androgen receptor expression[J]. J Neurooncol, 2006,80(1):1-7. DOI: 10.1007/s11060-006-9146-9.
[140]
MnangoL, MwakimongaA, NgaizaAI, et al. Expression of progesterone receptor and its association with clinicopathological characteristics in meningiomas: a cross-sectional study[J]. World Neurosurg X, 2021,12:100111. DOI: 10.1016/j.wnsx.2021.100111.
[141]
MaiuriF, MarinielloG, de DivitiisO, et al. Progesterone receptor expression in meningiomas: pathological and prognostic implications[J]. Front Oncol, 2021,11:611218. DOI: 10.3389/fonc.2021.611218.
[142]
RoserF, NakamuraM, BellinzonaM, et al. The prognostic value of progesterone receptor status in meningiomas[J]. J Clin Pathol, 2004,57(10):1033-1037. DOI: 10.1136/jcp.2004.018333.
[143]
PravdenkovaS, Al-MeftyO, SawyerJ, et al. Progesterone and estrogen receptors: opposing prognostic indicators in meningiomas[J]. J Neurosurg, 2006,105(2):163-173. DOI: 10.3171/jns.2006.105.2.163.
[144]
SilvaCB, OngarattiBR, TrottG, et al. Expression of somatostatin receptors (SSTR1-SSTR5) in meningiomas and its clinicopathological significance[J]. Int J Clin Exp Pathol, 2015,8(10):13185-13192.
[145]
FodiC, SkardellyM, HempelJM, et al. The immuno-histochemical expression of SSTR2A is an independent prognostic factor in meningioma[J]. Neurosurg Rev, 2022,45(4):2671-2679. DOI: 10.1007/s10143-021-01651-w.
[146]
RachingerW, StoeckleinVM, TerpolilliNA, et al. Increased 68Ga-DOTATATE uptake in PET imaging discriminates meningioma and tumor-free tissue[J]. J Nucl Med, 2015,56(3):347-353. DOI: 10.2967/jnumed.114.149120.
[147]
SommerauerM, BurkhardtJK, FrontzekK, et al. 68 Gallium-DOTATATE PET in meningioma: a reliable predictor of tumor growth rate?[J]. Neuro Oncol, 2016,18(7):1021-1027. DOI: 10.1093/neuonc/now001.
[148]
IvanidzeJ, RoytmanM, LinE, et al. Gallium-68 DOTATATE PET in the evaluation of intracranial meningiomas[J]. J Neuroimaging, 2019,29(5):650-656. DOI: 10.1111/jon.12632.
[149]
HenzeM, SchuhmacherJ, HippP, et al. PET imaging of somatostatin receptors using[68GA]DOTA-D-Phe1-Tyr3-octreotide: first results in patients with meningiomas[J]. J Nucl Med, 2001,42(7):1053-1056.
[150]
DittmarJO, KratochwilC, DittmarA, et al. First intraindividual comparison of contrast-enhanced MRI, FET- and DOTATOC-PET in patients with intracranial meningiomas[J]. Radiat Oncol, 2017,12(1):169. DOI: 10.1186/s13014-017-0913-x.
[151]
KunzWG, JungblutLM, KazmierczakPM, et al. Improved detection of transosseous meningiomas using 68Ga-DOTATATE PET/CT compared with contrast-enhanced MRI[J]. J Nucl Med, 2017,58(10):1580-1587. DOI: 10.2967/jnumed.117.191932.
[152]
GehlerB, PaulsenF, OksüzMO, et al.[68Ga]-DOTATOC-PET/CT for meningioma IMRT treatment planning[J]. Radiat Oncol, 2009,4:56. DOI: 10.1186/1748-717X-4-56.
[153]
Afshar-OromiehA, GieselFL, LinhartHG, et al. Detection of cranial meningiomas: comparison of 68Ga-DOTATOC PET/CT and contrast-enhanced MRI[J]. Eur J Nucl Med Mol Imaging, 2012,39(9):1409-1415. DOI: 10.1007/s00259-012-2155-3.
[154]
AckerG, KlugeA, LukasM, et al. Impact of 68Ga-DOTATOC PET/MRI on robotic radiosurgery treatment planning in meningioma patients: first experiences in a single institution[J]. Neurosurg Focus, 2019,46(6):E9. DOI: 10.3171/2019.3.FOCUS1925.
[155]
KlutmannS, BohuslavizkiKH, BrennerW, et al. Somatostatin receptor scintigraphy in postsurgical follow-up examinations of meningioma[J]. J Nucl Med, 1998,39(11):1913-1917.
[156]
HildebrandtG, ScheidhauerK, LuykenC, et al. High sensitivity of the in vivo detection of somatostatin receptors by 111indium (DTPA-octreotide)-scintigraphy in meningioma patients[J]. Acta Neurochir (Wien), 1994,126(2-4):63-71. DOI: 10.1007/BF01476412.
[157]
BohuslavizkiKH, BrennerW, BraunsdorfWE, et al. Somato-statin receptor scintigraphy in the differential diagnosis of meningioma[J]. Nucl Med Commun, 1996,17(4):302-310. DOI: 10.1097/00006231-199604000-00157.
[158]
LuykenC, HildebrandtG, KrischB, et al. Clinical relevance of somatostatin receptor scintigraphy in patients with skull base tumours[J]. Acta Neurochir Suppl, 1996,65:102-104. DOI: 10.1007/978-3-7091-9450-8_28.
[159]
MainiCL, SciutoR, TofaniA, et al. Somatostatin receptor imaging in CNS tumours using 111in-octreotide[J]. Nucl Med Commun, 1995,16(9):756-766. DOI: 10.1097/00006231-199509000-00006.
[160]
NathooN, UgokweK, ChangAS, et al. The role of 111indium-octreotide brain scintigraphy in the diagnosis of cranial, dural-based meningiomas[J]. J Neurooncol, 2007,81(2):167-174. DOI: 10.1007/s11060-006-9210-5.
[161]
WangS, YangW, DengJ, et al. Correlation between 99mTc-HYNIC-octreotide SPECT/CT somatostatin receptor scintigraphy and pathological grading of meningioma[J]. J Neurooncol, 2013,113(3):519-526. DOI: 10.1007/s11060-013-1146-y.
[162]
WuW, ZhouY, WangY, et al. Clinical significance of somatostatin receptor (SSTR) 2 in meningioma[J]. Front Oncol, 2020,10:1633. DOI: 10.3389/fonc.2020.01633.
[163]
JohnsonDR, KimmelDW, BurchPA, et al. Phase II study of subcutaneous octreotide in adults with recurrent or progressive meningioma and meningeal hemangiopericytoma[J]. Neuro Oncol, 2011,13(5):530-535. DOI: 10.1093/neuonc/nor044.
[164]
SchulzC, MathieuR, KunzU, et al. Treatment of unresectable skull base meningiomas with somatostatin analogs[J]. Neurosurg Focus, 2011,30(5):E11. DOI: 10.3171/2011.1.FOCUS111.
[165]
NordenAD, LigonKL, HammondSN, et al. Phase II study of monthly pasireotide LAR (SOM230C) for recurrent or progressive meningioma[J]. Neurology, 2015,84(3):280-286. DOI: 10.1212/WNL.0000000000001153.
[166]
MarincekN, RadojewskiP, DumontRA, et al. Somatostatin receptor-targeted radiopeptide therapy with 90Y-DOTATOC and 177Lu-DOTATOC in progressive meningioma: long-term results of a phase II clinical trial[J]. J Nucl Med, 2015,56(2):171-176. DOI: 10.2967/jnumed.114.147256.
[167]
CuneoMJ, MittagT. Oncogenic signaling of RTK fusions becomes more granular[J]. Mol Cell, 2021,81(12):2504-2506. DOI: 10.1016/j.molcel.2021.05.029.
[168]
MongreRK, MishraCB, ShuklaAK, et al. Emerging importance of tyrosine kinase inhibitors against cancer: quo vadis to cure?[J]. Int J Mol Sci, 2021,22(21):11659. DOI: 10.3390/ijms222111659.
[169]
CaltabianoR, BarbagalloGM, CastaingM, et al. Prognostic value of EGFR expression in de novo and progressed atypical and anapla-stic meningiomas: an immunohistochemical and fluorescence in situ hybridization pilot study[J]. J Neurosurg Sci, 2013,57(2):139-151.
[170]
BaxterDS, OrregoA, RosenfeldJV, et al. An audit of immuno-histochemical marker patterns in meningioma[J]. J Clin Neurosci, 2014,21(3):421-426. DOI: 10.1016/j.jocn.2013.06.008.
[171]
GuillaudeauA, DurandK, BessetteB, et al. EGFR soluble isoforms and their transcripts are expressed in meningiomas[J]. PLoS One, 2012,7(5):e37204. DOI: 10.1371/journal.pone.0037204.
[172]
NordenAD, RaizerJJ, AbreyLE, et al. Phase II trials of erlotinib or gefitinib in patients with recurrent meningioma[J]. J Neurooncol, 2010,96(2):211-217. DOI: 10.1007/s11060-009-9948-7.
[173]
OsorioDS, HuJ, MitchellC, et al. Effect of lapatinib on meningioma growth in adults with neurofibromatosis type 2[J]. J Neurooncol, 2018,139(3):749-755. DOI: 10.1007/s11060-018-2922-5.
[174]
LamszusK, LenglerU, SchmidtNO, et al. Vascular endothelial growth factor, hepatocyte growth factor/scatter factor, basic fibroblast growth factor, and placenta growth factor in human meningiomas and their relation to angiogenesis and malignancy[J]. Neurosurgery, 2000,46(4):938-947; discussion 947-948. DOI: 10.1097/00006123-200004000-00033.
[175]
NakadaS, SasagawaY, TachibanaO, et al. The clinico-pathological analysis of receptor tyrosine kinases in meningiomas: the expression of VEGFR-2 in meningioma was associated with a higher WHO grade and shorter progression-free survival[J]. Brain Tumor Pathol, 2019,36(1):7-13. DOI: 10.1007/s10014-018-0332-1.
[176]
BaumgartenP, BrokinkelB, ZinkeJ, et al. Expression of vascular endothelial growth factor (VEGF) and its receptors VEGFR1 and VEGFR2 in primary and recurrent WHO grade III meningiomas[J]. Histol Histopathol, 2013,28(9):1157-1166. DOI: 10.14670/HH-28.1157.
[177]
PreusserM, HasslerM, BirnerP, et al. Microvascularization and expression of VEGF and its receptors in recurring meningiomas: pathobiological data in favor of anti-angiogenic therapy approaches[J]. Clin Neuropathol, 2012,31(5):352-360. DOI: 10.5414/NP300488.
[178]
MaiuriF, De CaroMB, EspositoF, et al. Recurrences of meningiomas: predictive value of pathological features and hormonal and growth factors[J]. J Neurooncol, 2007,82(1):63-68. DOI: 10.1007/s11060-005-9078-9.
[179]
KaleyTJ, WenP, SchiffD, et al. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma[J]. Neuro Oncol, 2015,17(1):116-121. DOI: 10.1093/neuonc/nou148.
[180]
FerraraN, HillanKJ, GerberHP, et al. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer[J]. Nat Rev Drug Discov, 2004,3(5):391-400. DOI: 10.1038/nrd1381.
[181]
WeissJ. Bevacizumab in adjuvant treatment of non-small-cell lung cancer[J]. Lancet Oncol, 2017,18(12):1558-1560. DOI: 10.1016/S1470-2045(17)30843-4.
[182]
GrillJ, MassiminoM, BouffetE, et al. Phase II, open-label, randomized, multicenter trial (HERBY) of bevacizumab in pediatric patients with newly diagnosed high-grade glioma[J]. J Clin Oncol, 2018,36(10):951-958. DOI: 10.1200/JCO.2017.76.0611.
[183]
BertucciF, FekihM, AutretA, et al. Bevacizumab plus neoadjuvant chemotherapy in patients with HER2-negative inflammatory breast cancer (BEVERLY-1): a multicentre, single-arm, phase 2 study[J]. Lancet Oncol, 2016,17(5):600-611. DOI: 10.1016/S1470-2045(16)00011-5.
[184]
LouE, SumrallAL, TurnerS, et al. Bevacizumab therapy for adults with recurrent/progressive meningioma: a retrospective series[J]. J Neurooncol, 2012,109(1):63-70. DOI: 10.1007/s11060-012-0861-0.
[185]
NagashimaG, AsaiJ, SuzukiR, et al. Different distribution of c-myc and MIB-1 positive cells in malignant meningiomas with reference to TGFs, PDGF, and PgR expression[J]. Brain Tumor Pathol, 2001,18(1):1-5. DOI: 10.1007/BF02478918.
[186]
JohnsonMD, WoodardA, KimP, et al. Evidence for mitogen-associated protein kinase activation and transduction of mitogenic signals by platelet-derived growth factor in human meningioma cells[J]. J Neurosurg, 2001,94(2):293-300. DOI: 10.3171/jns.2001.94.2.0293.
[187]
WenPY, YungWK, LambornKR, et al. Phase II study of imatinib mesylate for recurrent meningiomas (North American Brain Tumor Consortium study 01-08)[J]. Neuro Oncol, 2009,11(6):853-860. DOI: 10.1215/15228517-2009-010.